
Non-Atomic Refactoring and Software Sustainability

Titus Winters
Google, Inc

titus@google.com

ABSTRACT

Sustainability is the ability of a project / codebase / organi-
zation to react to necessary changes over its expected lifespan.
At a large enough scale, or with enough disconnect between
dependencies, sustainability comes from application of both
technical and non-technical approaches. On the technical side,
I advocate for restraint among API providers on making arbi-
trary changes, and use of non-atomic refactoring techniques
when more invasive changes are required; such techniques
are employed in many Google projects, and in programming
languages like Go and C++, to allow more flexible changes
to language standards over time. On the non-technical side,
I argue for a clear separation of responsibilities (providers
need to do the bulk of the work for the update), as well as a
growing need to document acceptable usage of an API, be
it a library or programming language. In many languages,
there are very few changes to an API that are provably safe
without this idea: just because a users code currently works
does not mean that it is supported and can be expected
to continue to work indefinitely under maintenance. Taken
together, these two approaches form what I believe to be
a minimum set of requirements when approaching software
sustainability.

CCS CONCEPTS

� Software and its engineering � Software libraries
and repositories; Software maintenance tools;

KEYWORDS

Software engineering, refactoring, libraries

ACM Reference Format:
Titus Winters. 2018. Non-Atomic Refactoring and Software Sus-

tainability. In Proceedings of Workshop on API Usage and Evo-

lution (WAPI’18). ACM, New York, NY, USA, 4 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

What is the difference between programming and software
engineering? These are nebulous concepts and thus there
are many possible answers, but my favorite definition is this:
Software engineering is programming integrated over time. All

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

WAPI’18, June 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

of the hard parts of engineering come from dealing with time:
compatibility over time, dealing with changes to underlying
infrastructure and dependencies, and working with legacy
code or data. Fundamentally, it is a different task to produce
a programming solution to a problem (that solves the current
instances of the problem) vs. an engineering solution (that
solves current instances, future instances that we can predict,
and - through flexibility - allows updates to solve future
instances we may not be able to predict).

I have described software sustainability for years in very
similar terms: your code is sustainable if you are capable of
updating it to respond to necessary change for the expected
lifespan of the project. For programming projects (quick
hacks, school assignments, one-off academic analyses), it is
likely that there are no necessary changes - there probably
won’t be a new language version published in the days or
weeks that project is alive. For longer term projects, especially
successful OSS or industry projects, it is entirely possible
that the code in question needs to live for years or decades. It
should come as no surprise there are differences in approach
between these styles of projects.

From what I’ve seen, there is only limited awareness of sus-
tainability issues on the part of API providers or consumers.
Few providers are clear about what to expect from their APIs,
and thus consumers assume that anything that works now
will work indefinitely. Speaking as someone that has been
involved in hundreds of thousands of changes, I can say that
this approach only works if we stop everything and commit
to stability over all else. However, in a world where program-
ming languages, infrastructure libraries, and end-user code
change continuously, it is foolish in the extreme to believe
in perfect stability. Instead, what we need is a conceptual
approach that makes the responsibilities of both providers
and consumers clear, at least in the case where code needs
to work in an engineering sense - over time. (Obviously if the
problem lifetime is short and no dependencies are going to
change, these issues become non-existent.)

This paper will demonstrate the applicability of these
thoughts in three distinct situations: internal Google code,
new Google-backed OSS projects providing explicit compati-
bility promises, and new approaches for the C++ standard.

2 THE GOOGLE MONOREPO

In the past 5 years, we have committed nearly 1 million
commits to the Google codebase in service of large-scale
refactoring changes - broad but shallow changes that require
many updates but little or no semantic change. A single
such Large Scale Change (LSC) tends to vary from 50 to
10K commits. We execute roughly 20 LSCs per week across
languages.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


WAPI’18, June 2018, Gothenburg, Sweden Titus Winters

Importantly, we require that the team instigating a change
needs to make the change. The developers involved in deciding
that an API needs to be improved generally know far more
about the details than casual users of that API. It is far
more costly for non-expert developers to understand and
evaluate a change. This turns out to be a pretty good guiding
principle. Given the growth factors on dependencies, it is
clear that transitive dependencies grow super-linearly. If
project dependencies continue to require non-zero update
work, eventually all available effort will be consumed just
to keep up with churn caused by underlying dependencies.
When instead the teams that are triggering the change are
responsible for executing that change, the total cost is lower
and projects are free to focus on the content of their project
rather than the design details of every dependency. This also
forces infrastructure teams toward stability or, at minimum,
toward change that is feasible to automate.

On the flip side, consistent simple code is easier to refactor
than unusual clever code. When automating a transformation,
the more consistent the usage, the easier it is to generate
correct transformations. This exerts a significant force on
refactoring and API providers: if API providers are able to
guide their users into consistent and simple uses, then the
providers maintain greater flexibility if (when?) refactoring
becomes necessary. As a direct result, extensive effort is spent
on training, documentation, style guides, and static analysis
to ensure that Google developers understand how to simply
and consistently utilize programming languages and common
APIs in the Google monorepo.

It unusually easy for Google to get that training to work
because we have complete situational awareness: we control
the build system, the languages / toolchains, and the indexing
of code for searchability. We therefore understand how our
code is used in the vast majority of cases.

Because of the scale of our repository, we almost exclu-
sively use non-atomic refactoring techniques when executing
large changes: a new API is introduced, usage of the old API
is changed piecemeal, and when, there is no more use of the
old API, it is deleted. This keeps the codebase building and
functioning properly between every individual change. This
approach is a practical necessity for us because of the limit on
how many files can be included in a single change: it is often
impossible to sync a single change fast enough to update
more than a few thousand files at once (consider the ex-
pected amount of time to resolve merge conflicts and updates
compared to the expected amount of time between some file
being updated). It is also extra difficult to roll back a single
huge change if anything goes wrong. Non-atomic refactoring
breaks these down into simpler independent pieces. However,
there are other reasons to rely on non-atomic techniques -
if you lack perfect visibility and need to coordinate with
other developers, or the code is visible but resides in disjoint
repositories. Avoiding a breakage in those scenarios requires
the same non-atomic approach.

Our scale was the guiding force behind us moving to poli-
cies of non-atomic refactoring, pushing toward simplicity and
consistency, and forcing infrastructure teams to execute their

own changes to user code. However, as we’ve refined those
polices and techniques we have seen them become increas-
ingly applicable in other domains - I believe this division of
responsibilities and overall approach is applicable in most
scenarios that require significant compatibility over time.

3 ABSEIL

Beginning in 2016, Google began a massive refactoring project
that resulted in the open-source release of many of our C++
utility libraries. Released in 2017 [8], this codebase is known
as Abseil [3]. One of the primary mandates for Abseil is to
allow code sharing between our monorepo and the rest of
the world, without reducing internal velocity or our ability
to make changes to our common libraries. At the same time,
we want to be respectful of the users of public Abseil and
provide a stable target. This tension between velocity and
stability is in many respects the core problem in dependency
management and software engineering: when we move beyond
a single definition of HEAD (via a monorepo or some other
concept) or we lose perfect visibility in how our APIs are
used, refactoring becomes manifestly more difficult.

Several observations in software engineering need to be
accepted as axiomatic before discussing this in more depth:

∙ Dependency graphs are growing deeper and more com-
plex [4].

∙ Hyrums Law applies [9] - at scale, basically everything
has the potential to be a breaking change for someone.

∙ When breaking changes are made in a lower-level li-
brary, it isn’t just the direct dependencies of that li-
brary that are affected - all transitive dependencies are
affected.

∙ Diamond dependencies [5] grow more common as the
size of dependency graphs grows.

∙ Indirect users are the ones that are affected by diamond
dependencies.

∙ Even if a break is relatively easy to fix, indirect users
are unlikely to know anything about the library that is
the source of the break OR the API where the breakage
manifests.

There are, to the best of my knowledge, three strategies
that API providers can take to avoid causing widespread
damage for the users of those interfaces:

∙ Nothing ever changes. Over time this is unlikely to work
in most situations - A few interfaces built upon the
oldest, most fundamental, and most stable interfaces
(libc, POSIX, etc) may be able to avoid change. Any-
thing involving a computer network, untrusted data,
complex dependencies, or more modern programming
languages is likely to require some sort of update over
a long enough time frame.

∙ Release all dependencies as a single entity. This is sort
of the Linux Distribution model of dependency man-
agement: build everything into one release that works
together and allow outside developers to depend on
that as a whole. Pieces within that entity can theoreti-
cally be updated so long as no breaking changes are



Non-Atomic Refactoring and Software Sustainability WAPI’18, June 2018, Gothenburg, Sweden

introduced, but most users will likely not update until
a new release of the whole entity is produced.

∙ Live at Head. All libraries are released against the most-
current version of all of their (transitive) dependencies.
Users are encouraged to use those most-current versions
and to update frequently - syncing to current versions
of your dependencies should be as easy as updating
to HEAD in your repo. Practically speaking, this re-
quires that library providers make changes carefully,
unit tests are ubiquitous, and users understand what
changes are and are not expected from their underlying
dependencies.

This last idea is worth unpacking: a user of an API must
be aware of what to expect over time. If the interface they
are relying upon has issued a promise to never change, or the
duration of the usage is brief (say, building a proof of concept
or assignment or quick hack that will be discarded quickly),
anything that works is “right.” This is, in my terminology,
merely a “programming dependency” - time doesnt matter.

Conversely, if this usage is expected to continue and the
underlying API is not known to be indefinitely stable, a user
of an API should attempt to understand what usage is allow-
able. Using a C++ example: it is likely that new releases of a
library will introduce new APIs into the namespace for that
library, and therefore a user adding symbols into that names-
pace directly may conflict with future upgrades. APIs may
change by adding overload sets or default parameters; taking
the address of a function or depending on the specific type
signature from the underlying API will become a build break
in the face of such changes. Relying on metaprogramming
techniques to inspect the type signature of underlying APIs
is similarly brittle in the face of changes to the underlying
library.

To combat this, Abseil makes the following promise: we
will explicitly enumerate to the best of our ability the things
that users may not do [2]. If those rules are upheld, our
consistent stream of minor releases won’t break anybody. We
further aim to provide static analysis checks to enforce this
good usage whenever possible. In the rare instance that we
are forced to make a change that can break well-behaved
users, we will provide a tool to perform the upgrade. In
the diamond-dependency scenario, the goal of such a tool
is to allow a developer who is not expert in any of the
underlying dependencies to perform the upgrade with near-
zero knowledge of the code being modified. In the presence of
good unit tests, such tooling provides (in theory) a low-cost
solution to diamond dependencies and easier upgradability.
This makes live-at-head possible, even in a non-monorepo
world where we lack perfect visibility and control of users of
our code.

It is important to recognize the importance and difficulty
of adapting to time: A project that has no compatibility-over-
time requirements is fundamentally different from one that
needs to be maintained and adapt over time. We currently talk
about correct programs, but that is simplistic and misleading:
there are many programs that happen to be correct now

but will break when their dependencies change. Developers
must be aware of the expected lifespan of their outputs
and of the difference between happens to work now and
will reliably work for the foreseeable future. The latter is
fundamentally harder and requires an understanding of the
rights and responsibilities of a user of any given API - be it
a library like Abseil or something more fundamental like the
language version itself.

4 VELOCITY AND STABILITY IN THE
C++ STANDARD

For the past year, Ive been pushing proposal P0684 [6] [7]
through the C++ standards committee. This proposal is
pushing the C++ language itself through the process of de-
termining whether this is a language of exciting new features
(fast evolution, some inevitable missteps, ability to change
and fix mistakes over time) or a language of great stability
(binary compatibility for 10+ years, API compatibility for
longer timeframes, no existing code will ever have to change
as a result of an update in the language). I argue that we
cannot do a perfect job of both. Although the discussion
is ongoing, preliminary results suggest that the C++ Stan-
dards Committee is likely to slightly prioritize velocity over
stability.

Implicit in this prioritization is the notion that the release
of a new language version is not an atomic operation that
is expected to occur with zero effort. For comparison: even
upgrading compiler versions between allegedly compatible
language versions is an operation that requires some effort.
Upgrading language versions is likely to require at least that
much effort. Also note that any project or codebase that
is going to upgrade to a new language release likely has
someone performing that upgrade as a specific, intentional
task. Going forward, the current proposal is that we assume
two behaviors:

Compiler implementers will implement a warning mode,
available in the current C++ version, to statically identify
changes in behavior or APIs for the new version. Developers
who are performing the language upgrade will first update
to a current version of their compiler, enable those warnings,
evaluate the safety of enabling the new language version, and
then flip the switch.

This does not grant the committee complete freedom to
make arbitrary changes. It is still highly preferable for changes
to be made in a backward-compatible fashion. If that isn’t
possible, the best designs are those that allow explicit textual
changes to the current version such that no instances of the
old form remain when the upgrade is performed.

For example: In C++20 we could decide to make the
assignment/initialization + conditional ill-formed, codifying
the existing common warnings and instead relying on new
if+initializer syntax from C++17. That is:

if (int i = Foo())

would become an error in favor of the new syntax:

if (int i; i = Foo())



WAPI’18, June 2018, Gothenburg, Sweden Titus Winters

or without declaration:

if (i = Foo())

would require the existing solution:

if ((i = Foo()))

This syntax is detectable, in that we can clearly issue
a warning for it (we have done so for years in most/all
compilers). This is opt-in, given that every existing instance
can be converted to one of the two alternate syntaxes with no
behavior change, in C++17 mode. Whomever is responsible
for performing the upgrade to C++20 would use the compiler
generated warning to identify affected cases and upgrade them
appropriately - no instances of the old form would remain
when C++20 mode is finally enabled.

By preferring that changes require static detection by
previous-version compilers, the language is setting itself up to
enable tool-assisted upgrades. By further preferring changes
that can be opted-out in the previous language version, the
language itself is acknowledging the necessity and preference
for non-atomic refactoring patterns. The if+initializer exam-
ple above works because we introduced the new syntax in
C++17 - doing both operations (introducing a new API and
removing the old) in the same step is far harder to adapt to
or to use safely.

However, once again this approach is predicated on the
idea that the language is able to make at least certain classes
of changes safely. Introducing new APIs to the standard
library is implicitly a breaking change if users have been
ill-behaved in certain ways (adding APIs of the same name
into namespace std, for example). Practically speaking, there
are numerous operations at the standards level that the
committee regards as safe, even though usages exist that
would be broken in the face of that change. Once again we see
that the answer here is clear communication about acceptable
usage. Although the standard is far more accepting and offers
greater stability promises than Abseil, there is significant
overlap between what the standard practically disallows and
what Abseil explicitly disallows. It is likely that the standard
committee will vote on official endorsement of a similar (but
shorter) list of compatibility requirements early in 2018.

5 SUMMARY

Although the examples above are predicated on the specifics
of C++, I believe the underlying concepts are equally appli-
cable across all languages. When maintaining code in a large
and distributed fashion, a number of new behaviors become
clear:

∙ If it is feasible to promise complete stability, that is (of
course) preferable. Practically speaking, it is unlikely
that perfect stability can be promised indefinitely - over
a long enough time horizon, it is likely that everything
will require critical consideration and change1 On a
long enough time-horizon, it is best if we are *able* to
change everything - hopefully we do not have to.

1Consider the recent impact of Spectre and Meltdown.

∙ Non-atomic refactoring patterns are easier to adapt to
and are applicable in a wide variety of contexts.

∙ Clear enumeration of acceptable usage should be pro-
vided - what types of compatibility does your public
API promise?

I believe there is a rich and untapped vein of research
surrounding non-atomic refactoring, dependency compati-
bility, live-at-head, and dependency management. There is
a growing awareness that semantic versioning [1] is at best
misleading, partly because of its focus on direct consumers
of an API and blindness to the practical effects of networks
of dependencies. It will take a concerted effort from both
practitioners and theoreticians to get us to a world that more
accurately understands how to deal with change over time.

REFERENCES
[1] 2010. Semantic Versioning: Technical Whitepaper. (2010). https:

//www.osgi.org/wp-content/uploads/SemanticVersioning.pdf
[2] abseil.io. 2017. Abseil Compatibility Guidelines. (Sept.

2017). Retrieved February 2, 2018 from https://abseil.io/about/
compatibility

[3] abseil.io. 2017. abseil.io. (Sept. 2017). Retrieved February 2, 2018
from http://abseil.io/

[4] A. Decan, T. Mens, M. Claes, and P. Grosjean. 2016. When GitHub
Meets CRAN: An Analysis of Inter-Repository Package Dependency
Problems. In 2016 IEEE 23rd International Conference on Soft-
ware Analysis, Evolution, and Reengineering (SANER), Vol. 1.
493–504. https://doi.org/10.1109/SANER.2016.12

[5] Alan Mycroft Mark Florisson. 2015. Towards a Theory of Packages.
(2015). Retrieved February 2, 2018 from https://www.cl.cam.ac.
uk/∼mbf24/packages.pdf

[6] Daveed Vandevoorde Beman Dawes Michael Wong Howard Hinnant
Titus Winters, Bjarne Stroustrup. 2017. C++ Stability, Velocity,
and Deployment Plans. Technical Report P0684r0. ISO C++
Standardization Committee. http://wg21.link/P0684r0

[7] Titus Winters. 2017. C++ Stability, Velocity, and Deployment
Plans. Technical Report P0684r1. ISO C++ Standardization Com-
mittee. http://wg21.link/P0684r1

[8] Titus Winters. 2017. CppCon Keynote: C++ as a Live At Head
Language. Video. (26 Sept. 2017). Retrieved February 2, 2018
from https://www.youtube.com/watch?v=tISy7EJQPzI

[9] Hyrum Wright. 2014. Hyrum’s Law. (2014). Retrieved February
2, 2018 from http://hyrumslaw.com/

https://www.osgi.org/wp-content/uploads/SemanticVersioning.pdf
https://www.osgi.org/wp-content/uploads/SemanticVersioning.pdf
https://abseil.io/about/compatibility
https://abseil.io/about/compatibility
http://abseil.io/
https://doi.org/10.1109/SANER.2016.12
https://www.cl.cam.ac.uk/~mbf24/packages.pdf
https://www.cl.cam.ac.uk/~mbf24/packages.pdf
http://wg21.link/P0684r0
http://wg21.link/P0684r1
https://www.youtube.com/watch?v=tISy7EJQPzI
http://hyrumslaw.com/

	Abstract
	1 Introduction
	2 The Google Monorepo
	3 Abseil
	4 Velocity and Stability in the C++ Standard
	5 Summary
	References

